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SUMMARY

In this paper we look at the two major approaches that have been proposed

using fuzzy set theory to help in the analysis of decision trees, one based on

possibility theory, and one on a fuzzy extension of probability theory. We

conclude that the first approach requires an operational definition of

possibility in order to be sufficiently compelling to justify its use in

preference to standard decision analysis. We suggest that this work should

prompt us to consider the potential of using different connectives in

different decision contexts. It is stressed that the second approach is an

extension of the standard paradigm, rather than an alternative, as has

sometimes been assumed, and we suggest that it is more promising than the

first approach. We show how the extended theory may be used to help

understand and deal with inconsistent probability (or utility) assessments,

and we introduce the concept of the "value of perfect coherence" as an aid to

calculate the value of a decision analysis.
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1.0 INTRODUCTION

Decision analysis (DA) is a technique which can be used to help a decision

maker (DM) who is faced with a problem involving uncertainty and/or utility

considerations. DA has been well formulated for more than a decade [23),

[17], and successful consulting firms have grown up whose expertise lies

almost entirely within the field of decision analysis. Several successful

applications of the paradigm have been reported, e.g. (18], [19], and [13).

The technique as applied rests on the assumptions that a decision tree can be

drawn summarizing the situation and that all requisite probabilities and

utilities may be assessed from the decision-maker.

These assumptions are not, however, always valid, and so various modifications

and extensions of the paradigm have been proposed. In this paper we look at

two methods that have been proposed which draw on the theory of fuzzy sets

[31], [32], which was developed as a means for modeling imprecision. Each

method accepts the structuring assumption, but tries to relax the necessity

for precise numbers that the basic paradigm uses to represent the DM's

uncertainty and values. A relaxation of that requirement is worth seeking,

since a full elicitation of probabilities and utilities is always

time-consuming, and sometimes extremely difficult. Furthermore, DM's often

feel that they would prefer not to have to give numerical values to the

various elements of the decision tree. In this paper we shall focus our

attention on the modelling of uncertainty, for ease of exposition.



The first approach we discuss is represented by Yager, [30J, and also by

Whalen, [28]. They attempt to replace the need for measuring values on a

cardinal scale, as is the case with probabilities and utilities, with a

requirement for measuring values on an ordinal scale (i.e. where knowledge of

ordering of values is all that is required) by using the concepts of

possibility theory [32]. We look at this approach in Section 2.0

The second approach at which we shall look has been studied by Watson, Weiss

and Donnell (27], Freeling [7), [8] and by Adamo [1]. Here the principle of

maximizing expected utility is retained, but the input probabilities and

utilities are allowed to be fuzzy, rather than precise. They may be assessed

only linguistically (e.g. we may know only that event A is "quite probable"),

and using the extended arithmetic operations, as described for example in [4],

"fuzzy expected utilities" are calculated and then compared. In Section 3.0

we look at the potential and justification for this approach.

In Section 4.0 we show how postulating fuzzy probabilities may be useful in

explaining and coping with inconsistencies in a DM's probability assessments,

a problem that often occurs in applied decision analysis, and one that has

begun to receive some attention in the literature (21], [9]. In Section 5.0

we make some concluding remarks and suggestions for further research in this

area. This paper contains very little detailed mathematics, but rather we

attempt to explain the value and potential of the approaches discussed. For

more detailed expositions of the methods, the reader should turn to the

references mentioned above. In particular, we do not devote space to defining

the basic concepts of fuzzy sets, which are well treated elsewhere.

-2-



2.0 POSSIBILISTIC DECISION-MAKING

To illustrate the approach taken in [301 and (28], we shall use an example

from (30] (see Figure 1). This will be recognized as a standard, and very

simple, decision tree. The (somewhat sexist) problem it describes concerns

the dilemma of a young man (Bill) at a party, who is very attracted to a

certain young lady there. He feels that he would have more success (left

inexplicit in meaningf) if he waited until later in the party to approach her.

However, he observes Stanley, who has a reputation as a ladies' man, at the

party, and he feels that if Stanley approaches his target first she will

succumb to Stanley's charms. Thus our hero faces the decision of whether to

approach now, with less likelihood of success, or to wait until the

appropriate moment, and hope that Stanley approaches someone else.

Using the usual DA methodology, Bill would assess the probabilities at nodes

1, 2 and 3, and utilities at each of the end points. Then if p, is the

probability of success at the right time, P2 the probability of immediate

success, and P3 the probability that Stanley approaches someone else; and If

ui is the utility attached to endpoint i, the expected utility of waiting is

(1-P3 )ul + p3(Plu 2 + (1-pl)u 3 )

and the expected utility of an immediate approach is

P2u4 + (1-P2 )U5

and Bill simply has to choose that option having the highest expected utility.

-3-
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This is of course an example of the general principle of maximizing expected

utility, where if the probability of reaching endpoint i is Pi then the

expected utility is

ZiPiui•

Yager argues that the analogous quantity to maximize if we assume that the Pi

are "possibilities", and the ui the degree of membership of outcome i in the

set of "good things", should be

M~x(Min(Pi,Ui)).
1

This is consistent with the general tenet that in going from probability

theory to possibility theory, addition maps onto maximum, and multiplication

onto minimum. This arises directly from the difference in the rules for union

and intersection in the two theories: whereas in probability theory the

probability of an endpoint is calculated by multiplying all the probabilities

of the branches reaching it, when using possibilities we must take the minimum

of all the possibilities leading to that final outcome. It is now clear why

only ordinal information is considered necessary with possibilistic

decision-making, because the operations we use, max and min, require knowledge

only of order.

In the example of Figure 1 let us assume that the utility structure is such

that ui is equal to one if and only if Bill is successful; else ui is zero,

and that this is true whether we are using probabilistic or possibilistic

rules. Then using probabilities, Bill should approach only if

PlP3 < P2#

L -- - .. .. • . , ~ ~~~-5- .. . . - -- '



whereas using possibilities, the criterion is

Min(P3,Pl) < P2"

Thus far, Yager's approach may appear promising. If we can reach a decision

using only ordinal information, why not da so? The difficulty lies in finding

a justification for the use of the maximum and minimum operators.

Since Zadeh first proposed fuzzy set theory [31] research has been conducted

to justify the use of the max-min connectives. There has been some success at

developing axiomatic systems [2], [14] but psychological work attempting to

discover if the connectives are descriptive of human cognitive processes has

been rather negative [26], [16], [30]. It seems clear that the choice of

connectives should be dependent upon the situation in which the theory is

going to be used, as is argued by Gaines [15].

Probabilists have protested that they see no reason why numbers in the range

(0,1] that we elicit from a DM should not be probabilities, and operated with

as such. Dennis Lindley (personal communication) has expressed this perhaps

the most persuasively. He suggests that if, associated with an event E, there

is a number between zero and one which measures a feeling about the truth of

E, then there are two questions we need to ask about such numbers:

a) how do they combine, and

b) what is an operational interpretation of them?

Lindley then points out that, if x is the "truth value," if we are served a

penalty (x - 1)2 if B turns out to be true, and x2 if E turns out to be false,

then unless the numbers xi for different events Ei satisfy the laws of

-6-
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probability, our total penalty can be reduced whatever the truth or falsity of

the various Ei. Thus by using other rules for combination, we are committing

ourselves to losing money for sure. This penalty scheme is an example of a

scoring rule [18], the idea being that we do best if we give a value of one to

E when it is true, and zero when it is false. The argument may be extended to

a very wide variety of scoring rules. The operational definition of

probability arises out of the concept of indifference between gambles on

differing events. A further argument for the standard DA paradigm uses the

gambling interpretation--if one does not bet according to the laws of

probability one is open to losing money for sure, whatever the outcome of the

uncertain events. This would be an example of a Dutch Book [20]. We thus see

that using the max-min connectives could get very expensive!

Let us now examine the response to these points that could be made in defense

of possibilistic decision-making. First, we might argue, following Whalen

[28], that we do not need to use a number in [0,11 to represent the degree of

truth of E, but simply an ordered, qualitative scale, upon which max-min

operations are well-defined. This however does not avoid the problem since we

are still required to make comparisons such as

"Is it more possible that E is true than it is true that outcome A is
regrettable?"

It is not at all clear whether such comparisons can be made with any more ease

than assessing numbers, and indeed, subjects may even use an implicit number

scale to effect the comparison. In any case, the qualitative scale could be

mapped onto [0,1] and Lindley's arguments would still hold.

I



A second obvious response to Lindley's arguments is that there is no reason

why Bill should accept the reward structure implied by a scoring rule. This

response is further strengthened by research indicating that using scoring

rules to motivate subjects to provide good probability assessments, has not

been an unqualified success (see for example (22]). Our understanding of why

this is so, and why Lindley's argument is not fully persuasive, lies in a

distinction between the normative and the prescriptive aspects of the DA

paradigm. This distinction is discussed more fully in a recent report (12]:

to summarize, a normative theory discusses how a perfectly rational person

would act; a prescriptive theory how a real person should act. The two

concepts are distinct, though often confused.

The arguments put forward by Lindley are most persuasive normatively: if a

perfectly rational being acted in accordance with the scoring rule, he would

provide numbers which satisfied the probability axioms and which could be

intarpreted in the operational sense given above. A real DM, on the other

hand, will provide numbers which satisfy the axioms only approximately, and

thus the DA paradigm is only partially satisfactory as a prescription of how

to use these numbers. Yager indeed has developed the ideas in [30] as a means

for coping with the limited ability of a DM to provide probabilities.

However, in order to justify the use of the fuzzy calculus, a new operational

interpretation is required. When eliciting probabilities, the gambling

interpretation helps the DM in his assessment. If max-min possibilities are

required, a relevant interpretation will be required for the DM. Yager has

not provided this. (In a recent report [12] we suggest an interpretation in

terms of weights of evidence, but this seems appropriate only for inference,

-8-
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rather than decision problems.) Without any such interpretation, we cannot

expect the DM to provide values which should be used as inputs to Yager's

method. Indeed, in many situations a DM might be expected to have a concept

of chance, in which case elicited values might approximate probabilities, and

using max-min, erroneous conclusions result. For example, in Figure 1,

suppose P, = 0.7, P2 = 0.4, and P3 - 0.5, then using max-min, Bill should

choose to wait; using probability he would approach immediately. If Bill had

been thinking of probabilities, using max-min will have led to the wrong

decision. In the absence, then, of a normative framework which leads to the

max-min connectives, and which further provides an operational definition of

the numbers used, the modification of the DA paradigm suggested in [30) and

[28] must be considered unsatisfactory as a decision aid.

We do not however feel that the significance of the work in these two papers

should be overlooked. If one accepts the "bounded rationality" of a real DM,

then Lindley's arguments for the use of multiplication and addition to deal

with probabilities lose their force. It may be that neither of the two types

of operations so far discussed are best for decision aiding, but that we ought

to investigate the use of connectives which lie somewhere between the

probability ones and the possibility ones. Maybe a different operator should

be used in different cases, drawing perhaps from the infinite family of

connectives suggested by Yager himself, in another paper [293. Thus rather

than stating, as with the DA paradigm, that

"to calculate the value of a decision option we must multiply together
the probabilities leading to each endpoint and the utility at that
endpoint, and then sum over all the possible endpoints,"

or as in [301, that

-9-
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"to calculate the value of a decision option we must take the minimum of
all the possibilities leading to an endpoint and of the goodness of that
endpoint, and then take the maximum over all endpoints,"

our generalized paradigm would state that

"IF the numbers elicited from the DM are such that operation * is
appropriate for intersection, and operation @ is appropriate for union,
THEN to calculate the value of a decision option we must perform * on the
numbers associated with the uncertainties leading to each endpoint and on
the value of that endpoint, and then perform @ over all the possible
endpoints."

This very complicated expression greatly increases the flexibility of the

decision-aid, but maybe at the cost of making it intractable, since we would

need also, for each DM, to assess his * and @ functions. However the

techniques of psychological scaling may prove applicable here, and the

approach is probably worth looking into further. Herein, then, lies the major

value of [30] and [28J--they have prompted us to look again at the standard DA

paradigm and see alternatives to it that were not at all apparent until the

new concepts were produced.

-10-



3.0 FUZZY PROBABILISTIC DECISION-MAKING

The use of fuzzy sets made in [27], [7], (8] and (1] is very different from

that of [30] and (28). Whereas in [30] and (28], the authors propose what is

essentially an alternative to probability theory, the authors of [273, [7],

[8] and [1] view fuzzy set theory as a means of extending probability theory.

Thus, in these latter papers the authors keep the idea that one should

calculate expected utility, but propose that one should use fuzzy numbers

rather than crisp ones to perform this calculation. They draw on the

so-called Extension Theorem, to "fuzzify" the structure of the usual DA

paradigm. Instead of using the expected utility as equalling

Z iPi.Ui

they compute the fuzzy expected utility as

PlUl P20u2 S -- Pneun

where * and e are the binary operations of extended addition and extended

multiplication, respectively. For further details concerning these extended

operations, see (4], and each of the references [27), (7], [8] and (1] gives

examples of their application.

The essential feature of this approach is the assumption that the

probabilities and utilities assessed need not be precise. It is a matter of

common observation in applied decision analysis that DM's often feel uneasy at

being tied down to exact numbers, and that they will often give values which

are integral multiples of 0.1. They would feel easier were they permitted to

say the probability of an event was "about 0.3" than that it is 0.3. Further,

-11-



some probabilities are far more certain than others: e.g., I am far more

confident that the probability of a coin falling down heads is a half, if I

have observed 1000 trials, of which a half were heads, than I feel about the

probability of the President of the U.S. in 2100 being a Republican. With

ordinary DA I might not be able to express the difference, whereas with fuzzy

sets, this can be done easily. Consider Figure 2. The graph labelled (a)

depicts a probability of an event as usually assessed, but in the format of

the extended theory. The probability of E is taken to be 0.5 with possibility

1, and there is no possibility of it being any other value. The situation in

(b) may be more realistic--the probability may be anywhere in the range

[0.3,0.7], but the possibility decreases the further one looks from

0.5. This might be an appropriate representation of the value "approximately

one half." This, then, is the motivation for the approach--if we can perform

DA using only approximate responses, we shall have increased the applicability

of the methodology.

We must, however, examine the approach in the light of the same criticisms

discussed in the previous section. The probabilists ask,

"Why are the graphs in Figure 2 not probabilistic; i.e., why do we not
say the probability that P is 0.4, is a half, rather than saying the
possibility is one half?"

It should be noted that Lindley's arguments are not applicable here, for it is

meaningless to talk about rewards if the probability in fact turns out to be

0.4--since we are talking about subjective probabilities such an event is

umverifiable. The author would argue further, in fact, that there is no such

thing as "the subjective probability." Rather a DM will have, at best a

-12-
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somewhat fuzzy concept of the uncertainty, and this can only be described by

using fuzzy numbers, rather than the ordinary ones used in a conventional DA.

There remains, however, the very pertinent question of WHY we should operate

with these "fuzzy" numbers according to the max-min operators. There are very

strong reasons for wishing the max-min operators to apply; namely that

a) the computation of the fuzzy expected utilities is very simple,

b) the use of them allows the full machinery of fuzzy sets to be
applied to the problem,

c) there is a very appealing interpretation of the fuzzy DA as a
multiple-level sensitivity analysis.

The issue becomes, "can we elicit from the DM values for the possibilities

that do satisfy the fuzzy axioms?" Freeling in (7) and t8) has made an

initial attempt at providing an axiomatic basis, where the "possibilities" are

to be interpreted as degrees of confidence; i.e., we ask the DM how confident

he is that a certain value could be the probability, the answers ranging from

certain it is not, to certain that it could be. He shows how such responses

could indeed be operated with under the fuzzy calculus, providing the problem

is structured in a certain way. This approach needs further development, but

the work so far indicates the potential for success. It will be realized that

in this context, an operational definition of the membership functions has

been provided--they are degrees of confidence.

One fact that should be noted before proceeding further is that the

methodology discussed in this section in fact represents a double leap from

the usual DA paradigm--the first extension would be to use ordinary set

-14- WWj



theory, and allow the probability to range within an interval; i.e, the

membership function would always be zero or one. This approach of defining

upper and lower probabilities was in fact taken as early as the 1960's [3],

[25]. In that special case of the fuzzy theory, there need be little

controversy over the use of operators, for all fuzzy logics will agree with

ordinary logics for grades of membership zero and one.

A second point to note is that, although the membership functions of Figure 2

are evaluated over the interval [0,1], if one uses the axiomatic basis

suggested in [8], they are only ordinal functions. For example no attempt is

made to scale "very confident" compared to "quite confident." We need only

know that one implies more confidence than the other. Thus the criticism that

"fuzzy sets are not really fuzzy, because the membership functions are exact",

is defused since with this elicitation procedure we only require the DM to

distinguish between eleven levels (or less), rather than between any two real

numbers.
p

In order to understand how a fuzzy decision analysis may be interpreted as a

multi-level sensitivity analysis, let us define the level set at level c as

the set of x such that lj(x) > c. We show in [8] that if the level sets of

level c in the input functions are intervals (as in Figure 2), then the level

set at level c in the fuzzy expected utility is an interval. The endpoints of

this interval are defined by the extremes of the level sets at level c of the

input functions. So if we interpret the level sets of the inputs as defining

the range within which the input functions lie, at degree of confidence c, the

-15-

I -a . . - - ' .. - - "l' . . . *" ' • '' . . . -



range for the expected utility, at -that level of confidence, is simply the

level set at level c in the ouput. This justifies the claim that the fuzzy DA

may be interpreted as a sensitivity analysis conducted at each level for which

assessments were made.

That we are conducting such a multi-level sensitivity analysis is probably, in

itself, sufficient motivation for pursuing this approach. This is further

strengthened when it is considered that both Savage [24] and de Finetti 16]

deny the legitimacy of performing sensitivity analyses, on the grounds that

the subjectivist theory "proves" that the inputs to a DA are exact, and

therefore that the sensitivity analysis is meaningless. Using our extended

theory, where we assume that the input functions are not exact, the value of

the sensitivity analysis becomes clear, and this conforms more with our

intuitions of the way a DA ought to be performed. Once again we are making

the distinction between the normative theory, which postulates a super-being,

and a prescriptive theory which prescribes the way that a real human should

act. This whole suite of ideas is explored in greater detail, and with

further reference to many alternative theories of belief, in [12].

While this argument for the use of a fuzzy DA as a sensitivity analysis is

compelling, it is not wholly satisfactory. Even though a DM may wish to

provide only fuzzy inputs, it is typically necessary to make a non-fuzzy

decision. Thus knowing that one "sort of ought to do A" is insufficient. The

problem is that whereas expected utilities can ordinarily be compared

directly, fuzzy expected utilities will typically be as in Figure 2(c), where

-16-
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the membership functions overlap. It can then not be categorically stated

that one is greater than the other. The question of how to compare the output

functions is discussed at length in [B] and also in 5]. Here we shall look

only at the (common) case, where the functions are such that the "extended

maximum" of the two functions is equal to one of the two functions. The

extended maximum is denoted mix, and is defined by

sup (minWA1(XA1), PA2(XA2 )] )JMax(A, A2) (Y) m max(xAl,xA2 )=y

This is the fuzzy extension of the maximum of two numbers. It is not always

the case that Mix (Al, A2) is either A, or A2 , but it can be shown that if the

two membership functions overlap just once, after one has reached its peak and

before the other one has (as in Figure 2(c)), then this is true. Freeling [8]

suggests that in such situations, the fuzzy maximum should be used to make the

comparison. The extended maximum induces a partial order, >, on the fuzzy

numbers, by defining

a > b if and only if mix (a, b) = a.

This partial order can be considered, where we are dealing with fuzzy expected

utilities, to be an expression of "is preferred to," which, in accordance with

our intuition, becomes a fuzzy concept, rather than the crisp one of Savage

[24]. If two utilities are not comparable under > , this is an indication

that the amourt of "fuzz" in the inputs needs to be reduced.

With the use then of the extended maximum, and the concept of confidence in

assessments and level sets, we thus see that fuzzy decision analysis as

presented in [24], [6], and [7] is an extension of standard Bayesian decision

-17-



theory, with several useful properties and allowing veuer inputs. We thus

feel that it should not be viewed as a replacement for decision analysis, but

as an additional tool which may be of value. In the next section we examine

the potential of using this theory to explain the observation of

inconsistencies in probability assessments, and show how the extended maximum

can be used to gain some insight into the "value of coherence."

-18-



4.0 INCONSISTENCY AND INCOHERENCE

The problem is often encountered in applied decision analysis of DM's who

provide "probabilities" which do not satisfy the probability axioms.

Although, typically, a decision analyst will point out the inconsistency to

the DM, and ask the DM to try again, this is not entirely satisfactory. There

is a great deal to be gained if the analyst can use a formal procedure to help

the DM with this reconciliation. The analyst is, after all, hired to help the

DM, and this tricky reconciliation is one aspect of the problem where the DM

needs aid. Formal approaches to the problem have recently been developed

[21), [9), [10], using traditional methods. Further discussion of the

importance of the problem can also be found in 121) and [9]. In this section

we give the basis of an approach using the fuzzy model.

The essence of the approach is simple--if a DM is asked to provide just one

number to describe his/her uncertainty, while implicitly modelling the

uncertainty with a fuzzy probability, as in Figure 2(b), then with possibility

equal to the membership of P in the fuzzy probability, the DM will respond

with P. If the DM is asked in several different ways for the probability, it

should come as no surprise that several different values of P are given.

Furthermore, teith the technical machinery of the previous section at our

disposal, we need not ask for "reconciliation," since we can operate with the

fuzzy values.

Within the fuzzy methodology, we are also able to model the concept of

"perfect coherence" that is used in [211. A perfectly coherent subject is one
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who has integrated all of his/her knowledge about the world in a perfect

fashion, and who would always give fully consistent responses to any questions

concerning his/her probability assessments. Such a DM does not, of course,

exist, but is a useful construct. Within the fuzzy methodology, it is

necessary that a DM have only crisp probabilities, as in Figure 2(a), in order

for such total coherence to be possible. Thus the "fuzziness" of a

probability is an indication of the imperfection of the real DM. The ability

to model that imperfection is a forte of the fuzzy methodology.

We define the "value of perfect coherence (VOPC)," in a manner analogous to

the "value of perfect information (VOPI)" used in standard decision analyses.

Within the fuzzy model, perfect information can be viewed as shifting our

fuzzy probability to a crisp value of either zero or one. Our prior

uncertainty of where that shift will be is, as in the non-fuzzy case, modelled

by the original fuzzy probability. With this understanding, the VOPI cozcer't

can be easily extended to the fuzzy model. The effect of perfect cohere..

on the other hand, may be viewed as shifting our fuzzy probability to some

crisp value: the possibility that the shift will be to P being equal to the

initial possibility of P in the fuzzy probability. The VOPC may then be

calculated using a natural extension of the VOPI concept.

An example is shown in Figure 3. With the very simple decision tree of Figure

3(a), where the utilities are assumed crisp and either zero or one, and the

probability being fuzzy as in Figure 3(b), the VOPI and the VOPC are shown

superimposed in Figure 3(c). The values are, of course, fuzzy. It will be
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noted that using the partial order > defined in the previous section,

a) the value of perfect coherence is greater than zero, and

b) the value of perfect information is greater than the
value of perfect coherence.

In (11] we develop the mathematics of fuzzy VOPI and VOPC, and show that for

the tree of 3(a), the inequalities a) and b) always hold. These two results

are both very intuitive, and give further encouragement for the use of the

fuzzy model. We argue in [12] that the aim of a decision analysis is to

improve the coherence of a DM, and thus that the value of coherence gives a

method of calculating the value of an analysis prior to that analysis. Such a

tool would be extremely useful, and we are currently pursuing these ideas with

the aim of developing the technique further.
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5.0 SUMMARY AND CONCLUSIONS

In this paper we have looked at two approaches that have been proposed using

fuzzy set theory to help in the analysis of decision trees. We have concluded

that the approach of Section 2.0 requires an operational definition of

possibility in order to be sufficiently compelling to justify its use in

preference to standard DA. We have suggested that this work should prompt us

to consider the potential of using different connectives in different decision

contexts. The max-min and the probability operators should be considered as

extreme cases. The approach of Section 3.0 has been shown to be an extension

of the standard paradigm, rather than contradictory as has sometimes been

assumed. We have given an indication of how this extended theory may be used

to help understand and deal with inconsistent probability (or utility)

assessments, and have introduced the concept of the "value of perfect

coherence."

We conclude with some further comments which are intended as pointers towards

further research. We have looked only at the case of an individual DM, but,

as pointed out in [8], there is an interpretation of the membership functions

in the group decision-making context. The range of possible probabilities and

utilities would arise from the differing values of the different DM's. Our

theory provides a formal procedure for incorporating all these different

opinions, but further work is needed to explore all the ramifications of the

approach. We have not fuzzified the structuring process, but there is a

strong potential for an application there--one could use the full power of
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fuzzy sets and consider fuzzy events, rather than the crisp ones we have

assumed, and use fuzzy measure theory to define the fuzzy probabilities.

Another alternative would be to assume the decisions could be fuzzy. Whatever

theories are developed, it should always be borne in mind that a very

important aspect of providing a useful decision aid is providing an

operational definition of the numbers used.
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